Commit 5a8648e6 authored by Laura Mack's avatar Laura Mack
Browse files

changed syntax in d-GEV formula

parent 5fe91178
Package: IDF
Type: Package
Title: Estimation and Plotting of IDF Curves
Version: 0.0.2
Date: 2019-02-06
Version: 2.0.0
Date: 2020-11-22
Authors@R: c(person("Jana", "Ulrich", email = "jana.ulrich@fu-berlin.de", role = c("aut", "cre")),
person("Christoph", "Ritschel",email= "christoph.ritschel@met.fu-berlin.de", role = "aut"),
person("Laura","Mack", email= "laura.mack@fu-berlin.de",role="ctb"),
person("Christoph", "Ritschel", role = "aut"),
person("Carola", "Detring", role = "ctb"),
person("Sarah", "Joedicke", role = "ctb"))
Description: Intensity-duration-frequency (IDF) curves are a widely used analysis-tool
......@@ -14,7 +15,9 @@ Description: Intensity-duration-frequency (IDF) curves are a widely used analysi
precipitation time series on the basis of a duration-dependent
generalised extreme value distribution
[Koutsoyannis et al., 1998, <doi:10.1016/S0022-1694(98)00097-3>].
Imports: stats4,
Author: Jana Ulrich [aut, cre], Laura Mack [ctb], Christoph Ritschel [aut], Carola Detring [ctb], Sarah Joedicke [ctb]
Maintainer: Jana Ulrich <jana.ulrich@fu-berlin.de>
Imports: stats,
evd,
ismev,
RcppRoll,
......
......@@ -13,7 +13,7 @@
#'
#' @details The duration dependent GEV distribution is defined after
#' [Koutsoyannis et al., 1998]:
#' \deqn{ G(x)= exp[-{ 1+\xi(x/\sigma(d)-\mu_t) }^(-1/\xi)] }
#' \deqn{ G(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] }
#' with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and
#' modified location parameter \eqn{\mu_t=\mu/\sigma(d)}.
#'
......@@ -68,7 +68,7 @@ dgev.d <- function(q,mut,sigma0,xi,theta,eta,d,...) {
#'
#' @details The duration dependent GEV distribution is defined after
#' [Koutsoyannis et al., 1998]:
#' \deqn{ G(x)= exp[-{ 1+\xi(x/\sigma(d)-\mu_t) }^(-1/\xi)] }
#' \deqn{G(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] }
#' with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and
#' modified location parameter \eqn{\mu_t=\mu/\sigma(d)}.
#'
......@@ -112,7 +112,7 @@ pgev.d <- function(q,mut,sigma0,xi,theta,eta,d,...) {
#'
#' @details The duration dependent GEV distribution is defined after
#' [Koutsoyannis et al., 1998]:
#' \deqn{ G(x)= exp[-{ 1+\xi(x/\sigma(d)-\mu_t) }^(-1/\xi)] }
#' \deqn{ GG(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] }
#' with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and
#' modified location parameter \eqn{\mu_t=\mu/\sigma(d)}.
#'
......@@ -169,7 +169,7 @@ qgev.d <- function(p,mut,sigma0,xi,theta,eta,d,...) {
#'
#' @details The duration dependent GEV distribution is defined after
#' [Koutsoyannis et al., 1998]:
#' \deqn{ G(x)= exp[-{ 1+\xi(x/\sigma(d)-\mu_t) }^(-1/\xi)] }
#' \deqn{ G(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] }
#' with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and
#' modified location parameter \eqn{\mu_t=\mu/\sigma(d)}.
#'
......
......@@ -29,7 +29,7 @@ Density function of duration dependent GEV distribution
\details{
The duration dependent GEV distribution is defined after
[Koutsoyannis et al., 1998]:
\deqn{ G(x)= exp[-{ 1+\xi(x/\sigma(d)-\mu_t) }^(-1/\xi)] }
\deqn{ G(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] }
with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and
modified location parameter \eqn{\mu_t=\mu/\sigma(d)}.
}
......
......@@ -29,7 +29,7 @@ Distribution function of duration dependent GEV distribution
\details{
The duration dependent GEV distribution is defined after
[Koutsoyannis et al., 1998]:
\deqn{ G(x)= exp[-{ 1+\xi(x/\sigma(d)-\mu_t) }^(-1/\xi)] }
\deqn{G(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] }
with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and
modified location parameter \eqn{\mu_t=\mu/\sigma(d)}.
}
......
......@@ -29,7 +29,7 @@ Quantile function of duration dependent GEV distribution
\details{
The duration dependent GEV distribution is defined after
[Koutsoyannis et al., 1998]:
\deqn{ G(x)= exp[-{ 1+\xi(x/\sigma(d)-\mu_t) }^(-1/\xi)] }
\deqn{ GG(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] }
with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and
modified location parameter \eqn{\mu_t=\mu/\sigma(d)}.
}
......
......@@ -27,7 +27,7 @@ random generation of variables from duration dependent GEV distribution
\details{
The duration dependent GEV distribution is defined after
[Koutsoyannis et al., 1998]:
\deqn{ G(x)= exp[-{ 1+\xi(x/\sigma(d)-\mu_t) }^(-1/\xi)] }
\deqn{ G(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] }
with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and
modified location parameter \eqn{\mu_t=\mu/\sigma(d)}.
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment