Commit fd08b92e by Jana Ulrich

### (try to) fix equations in README

parent 87b349f6
 --- output: github_document output: github_document: pandoc_args: "--webtex" --- ... ... @@ -114,11 +116,13 @@  The function gev.d.fit provides the options: * theta_zero = TRUE $\theta = 0$ * eta2_zero = TRUE $\eta_2 = \eta$ * tau_zero = TRUE $\tau = 0$ resulting in the following features for IDF-curves: * simple scaling: using only parameters $\tilde{\mu}, \sigma_0, \xi, \eta$ * curvature for small durations: allowing $\theta \neq 0$ (default) * multi-scaling: allowing $\eta_2 \neq \eta$ ... ... @@ -164,8 +168,9 @@ for(i.fit in 1:length(all.fits)){ mtext('Duration [h]',1,2) } for(i.p in 1:length(idf.probs)){ IDF.plot(1/60*2^(seq(0,13,0.5)),gev.d.params(all.fits[[i.fit]]),probs = idf.probs[i.p],add = TRUE,legen=FALSE ,lty=i.p,cols = fit.cols[i.fit]) # plotting IDF curves for each model (different colors) and probability (different lty) IDF.plot(1/60*2^(seq(0,13,0.5)),gev.d.params(all.fits[[i.fit]]),probs = idf.probs[i.p] ,add = TRUE,legend = FALSE,lty = i.p,cols = fit.cols[i.fit]) } mtext(fit.labels[i.fit],3,-1.25) } ... ...
 ... ... @@ -74,13 +74,13 @@ fit <- gev.d.fit(xdat = ann.max$xdat,ds = ann.max$ds,sigma0link = make.link('log #> [1] 0 #> #> $nllh #> [1] 57.67781 #> [1] 60.23787 #> #>$mle #> [1] 7.253936e+00 2.905276e-01 9.574134e-02 1.067175e-10 8.025047e-01 #> [1] 5.682697e+00 5.816338e-01 -8.017104e-02 7.574509e-09 8.059212e-01 #> #> $se #> [1] 4.308783e-01 6.889894e-02 6.099439e-02 2.000065e-06 1.119207e-02 #> [1] 3.530129e-01 6.884231e-02 4.942244e-02 2.000060e-06 1.153130e-02 # checking the fit gev.d.diag(fit,pch=1,)  ... ... @@ -91,8 +91,8 @@ gev.d.diag(fit,pch=1,) # parameter estimates params <- gev.d.params(fit) print(params) #> mut sigma0 xi theta eta eta2 tau #> 1 7.253936 1.337133 0.09574134 1.067175e-10 0.8025047 0.8025047 0 #> mut sigma0 xi theta eta eta2 tau #> 1 5.682697 1.788959 -0.08017104 7.574509e-09 0.8059212 0.8059212 0 # plotting the probability density for a single duration q.min <- floor(min(ann.max$xdat[ann.max\$ds%in%1:2])) ... ... @@ -126,28 +126,57 @@ IDF.plot(durations,params,add=TRUE) This Example depicts the different features that can be used to model the IDF curves. Here we assume, that the block maxima of each duration can be modeled with the GEV distribution ($$\xi\neq0$$): $G(z;\mu,\sigma,\xi)=\exp \left\lbrace -\left[ 1+\xi \left( \frac{z-\mu}{\sigma} \right) \right]^{-1/\xi} \right\rbrace,$ can be modeled with the GEV distribution (![\\xi\\neq0](https://latex.codecogs.com/png.latex?%5Cxi%5Cneq0 "\\xi\\neq0")): ![G(z;\\mu,\\sigma,\\xi)=\\exp \\left\\lbrace -\\left$1+\\xi \\left( \\frac{z-\\mu}{\\sigma} \\right) \\right$^{-1/\\xi} \\right\\rbrace,](https://latex.codecogs.com/png.latex?G%28z%3B%5Cmu%2C%5Csigma%2C%5Cxi%29%3D%5Cexp%20%5Cleft%5Clbrace%20-%5Cleft%5B%20%0A1%2B%5Cxi%20%5Cleft%28%20%5Cfrac%7Bz-%5Cmu%7D%7B%5Csigma%7D%20%5Cright%29%0A%5Cright%5D%5E%7B-1%2F%5Cxi%7D%20%5Cright%5Crbrace%2C "G(z;\\mu,\\sigma,\\xi)=\\exp \\left\\lbrace -\\left[ 1+\\xi \\left( \\frac{z-\\mu}{\\sigma} \\right) \\right]^{-1/\\xi} \\right\\rbrace,") where the GEV parameters depend on duration according to: $\sigma(d)=\sigma_0(d+\theta)^{-\eta_2}+\tau, \\ \mu(d) = \tilde{\mu}\cdot\sigma_0(d+\theta)^{-\eta}+\tau, \\ \xi(d) = \text{const.}$ The function gev.d.fit provides the options: \* theta_zero = TRUE $$\theta = 0$$ \* eta2_zero = TRUE $$\eta_2 = \eta$$ \* tau_zero = TRUE $$\tau = 0$$ resulting in the following features for IDF-curves: \* simple scaling: using only parameters $$\tilde{\mu}, \sigma_0, \xi, \eta$$ \* curvature for small durations: allowing $$\theta \neq 0$$ (default) \* multi-scaling: allowing $$\eta_2 \neq \eta$$ \* flattening for long durations: allowing $$\tau \neq 0$$. ![ \\sigma(d)=\\sigma\_0(d+\\theta)^{-\\eta\_2}+\\tau, \\\\ \\mu(d) = \\tilde{\\mu}\\cdot\\sigma\_0(d+\\theta)^{-\\eta}+\\tau, \\\\ \\xi(d) = \\text{const.} ](https://latex.codecogs.com/png.latex?%0A%5Csigma%28d%29%3D%5Csigma_0%28d%2B%5Ctheta%29%5E%7B-%5Ceta_2%7D%2B%5Ctau%2C%20%5C%5C%0A%5Cmu%28d%29%20%3D%20%5Ctilde%7B%5Cmu%7D%5Ccdot%5Csigma_0%28d%2B%5Ctheta%29%5E%7B-%5Ceta%7D%2B%5Ctau%2C%20%20%5C%5C%0A%5Cxi%28d%29%20%3D%20%5Ctext%7Bconst.%7D%20%0A " \\sigma(d)=\\sigma_0(d+\\theta)^{-\\eta_2}+\\tau, \\\\ \\mu(d) = \\tilde{\\mu}\\cdot\\sigma_0(d+\\theta)^{-\\eta}+\\tau, \\\\ \\xi(d) = \\text{const.} ") The function gev.d.fit provides the options: - theta_zero = TRUE ![\\theta = 0](https://latex.codecogs.com/png.latex?%5Ctheta%20%3D%200 "\\theta = 0") - eta2_zero = TRUE ![\\eta\_2 = \\eta](https://latex.codecogs.com/png.latex?%5Ceta_2%20%3D%20%5Ceta "\\eta_2 = \\eta") - tau_zero = TRUE` ![\\tau = 0](https://latex.codecogs.com/png.latex?%5Ctau%20%3D%200 "\\tau = 0") resulting in the following features for IDF-curves: - simple scaling: using only parameters ![\\tilde{\\mu}, \\sigma\_0, \\xi, \\eta](https://latex.codecogs.com/png.latex?%5Ctilde%7B%5Cmu%7D%2C%20%5Csigma_0%2C%20%5Cxi%2C%20%5Ceta "\\tilde{\\mu}, \\sigma_0, \\xi, \\eta") - curvature for small durations: allowing ![\\theta \\neq 0](https://latex.codecogs.com/png.latex?%5Ctheta%20%5Cneq%200 "\\theta \\neq 0") (default) - multi-scaling: allowing ![\\eta\_2 \\neq \\eta](https://latex.codecogs.com/png.latex?%5Ceta_2%20%5Cneq%20%5Ceta "\\eta_2 \\neq \\eta") - flattening for long durations: allowing ![\\tau \\neq 0](https://latex.codecogs.com/png.latex?%5Ctau%20%5Cneq%200 "\\tau \\neq 0"). Example: ... ... @@ -190,8 +219,9 @@ for(i.fit in 1:length(all.fits)){ mtext('Duration [h]',1,2) } for(i.p in 1:length(idf.probs)){ IDF.plot(1/60*2^(seq(0,13,0.5)),gev.d.params(all.fits[[i.fit]]),probs = idf.probs[i.p],add = TRUE,legen=FALSE ,lty=i.p,cols = fit.cols[i.fit]) # plotting IDF curves for each model (different colors) and probability (different lty) IDF.plot(1/60*2^(seq(0,13,0.5)),gev.d.params(all.fits[[i.fit]]),probs = idf.probs[i.p] ,add = TRUE,legend = FALSE,lty = i.p,cols = fit.cols[i.fit]) } mtext(fit.labels[i.fit],3,-1.25) } ... ...

9.32 KB | W: | H:

9.73 KB | W: | H:

• 2-up
• Swipe
• Onion skin

47.4 KB | W: | H:

43.8 KB | W: | H:

• 2-up
• Swipe
• Onion skin

22 KB | W: | H:

21.2 KB | W: | H:

• 2-up
• Swipe
• Onion skin

36.2 KB | W: | H:

37.2 KB | W: | H:

• 2-up
• Swipe
• Onion skin
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment