% Generated by roxygen2: do not edit by hand % Please edit documentation in R/d-gev.R \name{pgev.d} \alias{pgev.d} \title{Distribution function of duration dependent GEV distribution} \usage{ pgev.d(q, mut, sigma0, xi, theta, eta, d, ...) } \arguments{ \item{q}{vector of quantiles} \item{mut, sigma0, xi}{numeric value, giving modified location, modified scale and shape parameter} \item{theta}{numeric value, giving duration offset (defining curvature of the IDF curve)} \item{eta}{numeric value, giving duration exponent (defining slope of the IDF curve)} \item{d}{positive numeric value, giving duration} \item{...}{additional parameters passed to \code{\link[evd]{pgev}}} } \value{ list containing vectors of probability values for given quantiles the first element of the list are the prob. values for the first given duration and so on } \description{ Distribution function of duration dependent GEV distribution } \details{ The duration dependent GEV distribution is defined after [Koutsoyannis et al., 1998]: \deqn{G(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}] } with the duration dependent scale \eqn{\sigma(d)=\sigma_0/(d+\theta)^\eta} and modified location parameter \eqn{\mu_t=\mu/\sigma(d)}. } \examples{ x <- seq(4,20,0.1) prob <- pgev.d(q=x,mut=4,sigma0=2,xi=0,theta=0.1,eta=0.1,d=1) } \references{ Koutsoyannis et al., 1998, doi:10.1016/S0022-1694(98)00097-3 } \seealso{ \code{\link{dgev.d}}, \code{\link{qgev.d}}, \code{\link{rgev.d}} }